MET: A link to Autism & GI disorders

Characterizing and understanding autism spectrum disorders (ASD) represent great challenges facing neuroscientists today. Accumulating evidence suggests that alterations in the patterning of specific brain structures and circuitry during development may contribute to ASD. The Met tyrosine kinase receptor is important for cell differentiation and organ development. In the developing CNS, Met is thought to facilitate a number of processes including neuronal migration, axon guidance and dendritic arborization by mediating cellular responses to its endogenous ligand, hepatocyte growth factor (HGF). In a paper recently published in The Journal of Comparative Neurology, Judson and colleagues followed up on previous reports relating autism and related signaling in normal brain development, possibly by facilitating outgrowth and path-finding in forebrain axons. Using an Emx1<sup>lox⁵² line and a “floxed” Met allele, the authors analyzed mice with a selective ablation of Met in all cells arising from dorsal pallium, which includes projection neurons of the cerebral cortex, hippocampus and some amygdaloid nuclei. This analysis was useful for determining the source of Met expression in the forebrain and further supported the hypothesis that Met is most highly expressed in the axonal projections of neurons, particularly projection neurons of the cortex and components of limbic circuitry.

The highest levels of Met expression were observed in the cerebral cortex, and in limbic system associated structures thought to be important for emotional and social function, implicating Met in the establishment and organization of the neural circuitry responsible for maintaining normal emotional and social function. The manifestation of ASD often involves abnormal emotional and social behavior, possibly resulting from a physical disorganization of the circuits involved. This study provides evidence for a potential molecular substrate contributing to developmental abnormalities associated with ASD. Furthermore, it implies a significant role for Met receptor related signaling in normal development of the limbic system and forebrain.

expression levels are highest in the early postnatal developmental period from P0 to P21. This corresponds to the time of mouse brain development in which neurite outgrowth and synaptogenesis occur. This finding further supports a role for Met in the formation of neural circuitry, possibly by facilitating outgrowth and path-finding in forebrain axons. Using an Emx1<sup>lox⁵² line and a “floxed” Met allele, the authors analyzed mice with a selective ablation of Met in all cells arising from dorsal pallium, which includes projection neurons of the cerebral cortex, hippocampus and some amygdaloid nuclei. This analysis was useful for determining the source of Met expression in the forebrain and further supported the hypothesis that Met is most highly expressed in the axonal projections of neurons, particularly projection neurons of the cortex and components of limbic circuitry.

The highest levels of Met expression were observed in the cerebral cortex, and in limbic system associated structures thought to be important for emotional and social function, implicating Met in the establishment and organization of the neural circuitry responsible for maintaining normal emotional and social function. The manifestation of ASD often involves abnormal emotional and social behavior, possibly resulting from a physical disorganization of the circuits involved. This study provides evidence for a potential molecular substrate contributing to developmental abnormalities associated with ASD. Furthermore, it implies a significant role for Met receptor related signaling in normal development of the limbic system and forebrain.

olig2 and Development

Centuries of painstaking contributions to the human brain atlas have resulted in a nearly gridlocked roadmap of neural networks. Relatively recent genetic characterizations in model organisms have shed new light on the developing brain. These developmental studies hold the capacity not only to decode the origins of neural complexity, but may in turn reveal the molecular nature of neurodegenerative diseases. In a recent paper highlighted on the cover of the Journal of Neuroscience, Zannino and colleagues identified neural and glial cell origins in the developing brain, ultimately demonstrating the impact of the olig2 transcription factor on formation of oligodendrocyte progenitor cells (OPCs) and a specific type of motor neuron (MN) in the zebrafish hindbrain.

Oligodendrocytes are the myelinating cell type of the central nervous system. Through myelination of neural fibers in the CNS, oligodendrocytes contribute to rapid propagation of action potentials. Immature oligodendrocyte progenitor cells are specified from neuroepithelial precursor populations, which also give rise to neuronal cell types. The mechanism of specification and subsequent differentiation from precursor populations has been most intimately studied in the spinal cord, where the neural milieu is relatively restricted as compared to the brain, thereby facilitating the tracing of migratory behavior of cells and